Superposition modulo theory
نویسنده
چکیده
This thesis is about the Hierarchic Superposition calculus SUP(T) and its application to reasoning in hierarchic combinations FOL(T) of the free first-order logic FOL with a background theory T where the hierarchic calculus is refutationally complete or serves as a decision procedure. Particular hierarchic combinations covered in the thesis are the combinations of FOL and linear and non-linear arithmetic, LA and NLA resp. Recent progress in automated reasoning has greatly encouraged numerous applications in softand hardware verification and the analysis of complex systems. The applications typically require to determine the validity/unsatisfiability of quantified formulae over the combination of the free first-order logic with some background theories. The hierarchic superposition leverages both (i) the reasoning in FOL equational clauses with universally quantified variables, like the standard superposition does, and (ii) powerful reasoning techniques in such theories as, e.g., arithmetic, which are usually not (finitely) axiomatizable by FOL formulae, like modern SMT solvers do. The thesis significantly extends previous results on SUP(T), particularly: we introduce new substantially more effective sufficient completeness and hierarchic redundancy criteria turning SUP(T) to a complete or a decision procedure for various FOL(T) fragments; instantiate and refine SUP(T) to effectively support particular combinations of FOL with the LA and NLA theories enabling a fully automatic mechanism of reasoning about systems formalized in FOL(LA) or FOL(NLA).
منابع مشابه
Beagle - A Hierarchic Superposition Theorem Prover
Beagle is an automated theorem prover for first-order logic modulo built-in theories. It implements a refined version of the hierarchic superposition calculus. This system description focuses on Beagle’s proof procedure, background reasoning facilities, implementation, and experimental results.
متن کاملSuperposition Modulo Linear Arithmetic SUP(LA)
The hierarchical superposition based theorem proving calculus of Bachmair, Ganzinger, and Waldmann enables the hierarchic combination of a theory with full first-order logic. If a clause set of the combination enjoys a sufficient completeness criterion, the calculus is even complete. We instantiate the calculus for the theory of linear arithmetic. In particular, we develop new effective version...
متن کاملOn Deciding Satisfiability by DPLL(Γ + T ) and Unsound Theorem Proving
Applications in software verification often require determining the satisfiability of first-order formulæ with respect to some background theories. During development, conjectures are usually false. Therefore, it is desirable to have a theorem prover that terminates on satisfiable instances. Satisfiability Modulo Theories (SMT) solvers have proven highly scalable, efficient and suitable for int...
متن کاملEngineering DPLL(T) + Saturation
Satisfiability Modulo Theories (SMT) solvers have proven highly scalable, efficient and suitable for integrated theory reasoning. The most efficient SMT solvers rely on refutationally incomplete methods for incorporating quantifier reasoning. We describe a calculus and a system that tightly integrates Superposition and DPLL(T). In the calculus, all non-unit ground clauses are delegated to the D...
متن کاملModular proof systems for partial functions with Evans equality
The paper presents a modular superposition calculus for the combination of firstorder theories involving both total and partial functions. The modularity of the calculus is a consequence of the fact that all the inferences are pure – only involving clauses over the alphabet of either one, but not both, of the theories – when refuting goals represented by sets of pure formulae. The calculus is s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013